4.5 Article

Differential expression of microRNAs in plasma of patients with prediabetes and newly diagnosed type 2 diabetes

期刊

ACTA DIABETOLOGICA
卷 53, 期 5, 页码 693-702

出版社

SPRINGER-VERLAG ITALIA SRL
DOI: 10.1007/s00592-016-0837-1

关键词

MicroRNA; Plasma; Type 2 diabetes (T2D); Prediabetes; Differential expression

资金

  1. Science and Technology Support Program of Guizhou Province of Guizhou Branch [SY20123115]

向作者/读者索取更多资源

MicroRNAs (miRNAs) are present in plasma and have emerged as critical regulators of gene expression at posttranscriptional level, and thus are involved in various human diseases, including diabetes. The objective of this study was to screen and validate differentially expressed plasma miRNAs in prediabetes and newly diagnosed type 2 diabetes (T2D). In this study, we screened differentially expressed plasma miRNAs in prediabetes and newly diagnosed T2D by miRNA microarray analysis, and validated the expression of candidate miRNAs using quantitative reverse transcription polymerase chain reaction assays. Furthermore, we performed gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses to disclose functional enrichment of genes predicted to be regulated by the differentially expressed miRNAs. Notably, our results revealed that hsa-miR-1249, hsa-miR-320b, and hsa-miR-572 (P < 0.05) were differentially expressed among the three groups, which yielded an area under the receiver operator characteristics curve (AUC) of 0.784 [95 % confidence interval (CI) 0.685-0.883], 0.946 (95 % CI 0.906-0.985), and 0.843 (95 % CI 0.766-0.920) discriminating T2D patients from NGT control groups, respectively, while the AUC was 0.887 (95 % CI 0.818-0.957), 0.635 (95 % CI 0.525-0.744), and 0.69 (95 % CI 0.580-0.793) discriminating prediabetes patients from NGT control groups, respectively. In addition, GO and KEGG pathway analyses showed that genes predicted to be regulated by differentially expressed miRNAs were significantly enriched in several related biological processes and pathways, including the development of multicellular organisms, signal transduction, cell differentiation, apoptosis, cell metabolism, ion transport regulation, and other biological functions. Taken together, our results showed differentially expressed miRNAs in T2D and prediabetes. Plasma hsa-miR-1249, hsa-miR-320b, and hsa-miR-572 may serve as novel biomarkers for diagnosis and potential targets for the treatment for prediabetes and T2D.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据