4.8 Article

Technologies to address antimicrobial resistance

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1717160115

关键词

vaccines; AMR; antibiotics; bacterial infections

向作者/读者索取更多资源

Bacterial infections have been traditionally controlled by antibiotics and vaccines, and these approaches have greatly improved health and longevity. However, multiple stakeholders are declaring that the lack of new interventions is putting our ability to prevent and treat bacterial infections at risk. Vaccine and antibiotic approaches still have the potential to address this threat. Innovative vaccine technologies, such as reverse vaccinology, novel adjuvants, and rationally designed bacterial outer membrane vesicles, together with progress in polysaccharide conjugation and antigen design, have the potential to boost the development of vaccines targeting several classes of multidrug-resistant bacteria. Furthermore, new approaches to deliver small-molecule antibacterials into bacteria, such as hijacking active uptake pathways and potentiator approaches, along with a focus on alternative modalities, such as targeting host factors, blocking bacterial virulence factors, monoclonal antibodies, and microbiome interventions, all have potential. Both vaccines and antibacterial approaches are needed to tackle the global challenge of antimicrobial resistance (AMR), and both areas have the underpinning science to address this need. However, a concerted research agenda and rethinking of the value society puts on interventions that save lives, by preventing or treating life-threatening bacterial infections, are needed to bring these ideas to fruition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据