4.8 Article

Modeling stochastic processes in disease spread across a heterogeneous social system

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1801429116

关键词

disease spread; Hawkes process; infection flow; human mobility

向作者/读者索取更多资源

Diffusion processes are governed by external triggers and internal dynamics in complex systems. Timely and cost-effective control of infectious disease spread critically relies on uncovering underlying diffusion mechanisms, which is challenging due to invisible infection pathways and time-evolving intensity of infection cases. Here, we propose a new diffusion framework for stochastic processes, which models disease spread across metapopulations by incorporating human mobility as topological pathways in a heterogeneous social system. We apply Bayesian inference with the stochastic Expectation-Maximization algorithm to quantify underlying diffusion dynamics in terms of exogeneity and endogeneity and estimate cross-regional infection flow based on Granger causality. The effectiveness of our proposed model is shown by using comprehensive simulation procedures (robustness tests with noisy data considering missing or delayed human case reporting in real situations) and by applying the model to real data from 15-y dengue outbreaks in Australia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据