4.8 Article

Kernel size-related genes revealed by an integrated eQTL analysis during early maize kernel development

期刊

PLANT JOURNAL
卷 98, 期 1, 页码 19-32

出版社

WILEY
DOI: 10.1111/tpj.14193

关键词

expression quantitative trait loci; complex trait; m(6)A RNA modification; kernel development; Zea mays L

资金

  1. National Key Basic Research Program of China [2014CB138205]
  2. National Key Research and Development Program of China [2016YFD0101002]
  3. Long Ping High-Tech
  4. BRI-CAAS
  5. China Postdoctoral Science Foundation [2017M611060]
  6. Agricultural Science and Technology Innovation Program of CAAS
  7. Youth Talent Plan of CAAS

向作者/读者索取更多资源

In maize, kernel traits strongly impact overall grain yields, and it is known that sophisticated spatiotemporal programs of gene expression coordinate kernel development, so advancing our knowledge of kernel development can help efforts to improve grain yields. Here, using phenotype, genotype and transcriptomics data of maize kernels at 5 and 15 days after pollination (DAP) for a large association mapping panel, we employed multiple quantitative genetics approaches-genome-wide association studies (GWAS) as well as expression quantitative trait loci (eQTL) and quantitative trait transcript (QTT) analyses-to gain insights about molecular genetic basis of kernel development in maize. This resulted in the identification of 137 putative kernel length-related genes at 5 DAP, of which 43 are located in previously reported QTL regions. Strikingly, we identified an eQTL that overlaps the locus encoding a maize homolog of the recently described m(6)A methylation reader protein ECT2 from Arabidopsis; this putative (epi)eQTL is associated with 53 genes and may represent a master epi-transcriptomic regulator of kernel development. Notably, among the genes associated with this (epi)eQTL, 10 are for the main storage proteins in the maize endosperm (zeins) and two are known regulators of zein expression or endosperm development (Opaque2 and ZmICE1). Collectively, beyond cataloging and characterizing genomic attributes of a large number of eQTL associated with kernel development in maize, our study highlights how an eQTL approach can bolster the impact of both GWAS and QTT studies and can drive insights about the basic biology of plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据