4.5 Article

Copper nanoparticles elevate regeneration capacity of (Ocimum basilicum L.) plant via somatic embryogenesis

期刊

PLANT CELL TISSUE AND ORGAN CULTURE
卷 136, 期 1, 页码 41-50

出版社

SPRINGER
DOI: 10.1007/s11240-018-1489-3

关键词

Copper nanoparticles; Basil; Ocimum basilicum; Regeneration; Embryogenesis

资金

  1. Plant Biotechnology Research Laboratories (PBRL), Plant Physiology Department, Faculty of Agriculture, Cairo University

向作者/读者索取更多资源

The current work, was conducted to investigate the influences of copper nanoparticles (Cu-NPs) compared to copper sulfate on plant regeneration of Ocimum basilicum through somatic embryogenesis. To achieve this goal, the Cu-NPs with a size range of (20-40nm) were chemically synthesized and characterized by the spectrophotometer and the Transmission Electron Microscope (TEM). Thereafter, various concentrations (0.1, 2.5, 5, 7.5, 10, 12.5 and 15 mu M) of Cu-NPs or CuSO(4)5H(2)O were added to the culture media. The results proved that the inclusion of Cu-NPs (5 mu M) significantly increased the percentage of explants produced somatic embryos (from 15 to 84%) and the average number of regenerated plantlets/explant (from 4.3 to 18.7) in comparison to the control treatment (0.1 mu M CuSO(4)5H(2)O). In addition, the results evidently proved that the use of copper in the crystalline form as Cu-NPs is superior to the ionic form as CuSO(4)5H(2)O. Thus the use of Cu-NPs (5 mu M) increased the percentage of explants produced somatic embryos from (36-84%) and the average number of regenerated plantlets/explant (from 7.4 to 18.7) compared to CuSO(4)5H(2)O (5 mu M). Finally, the elevated regeneration capacity of basil plant via somatic embryogenesis proved that an efficient protocol was achieved in this study as a promising step in the field of plant nanobiotechnology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据