4.7 Article

An apple transcription factor, MdDREB76, confers salt and drought tolerance in transgenic tobacco by activating the expression of stress-responsive genes

期刊

PLANT CELL REPORTS
卷 38, 期 2, 页码 221-241

出版社

SPRINGER
DOI: 10.1007/s00299-018-2364-8

关键词

Abiotic stress; DREB transcription factor; Malus domestica; Transgenic plants; Salinity tolerance; Drought tolerance

资金

  1. Council of Scientific and Industrial Research (CSIR), New Delhi, India [BSC0107]
  2. Council of Scientific and Industrial Research, New Delhi

向作者/读者索取更多资源

Key messageAn apple gene, MdDREB76 encodes a functional transcription factor and imparts salinity and drought stress endurance to transgenic tobacco by activating expression of stress-responsive genes.AbstractThe dehydration-responsive element (DRE)-binding protein (DREB) transcription factors are well known to be involved in regulating abiotic stress-mediated gene expression in plants. In this study, MdDREB76 gene was isolated from apple (Malus x domestica), which encodes a functional transcription factor protein. Overexpression of MdDREB76 in tobacco conferred salt and drought stress tolerance to transgenic lines by inducing antioxidant enzymes, such as superoxide dismutase, ascorbate peroxidase and catalase. The higher membrane stability index, relative water content, proline, total soluble sugar content and lesser H(2)O(2)content, electrolyte leakage and lipid peroxidation in transgenics support the improved physiological status of transgenic plants as compared to WT plants under salinity and drought stresses. The MdDREB76 overexpression upregulated the expression of stress-responsive genes that provide salinity and drought stress endurance to the plants. Compared to WT plants, transgenic lines exhibited healthy growth and higher yield under stress conditions. The present study reports MdDREB76 as a key regulator that switches on the battery of downstream genes which impart salt and osmotic stress endurance to the transgenic plants and can be used for genetic engineering of crop plants to combat salinity and drought stresses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据