4.7 Review

Gas exchange and water-use efficiency in plant canopies

期刊

PLANT BIOLOGY
卷 22, 期 -, 页码 52-67

出版社

WILEY
DOI: 10.1111/plb.12939

关键词

Photosynthesis; stable carbon isotopes; stomatal conductance; water-use efficiency

向作者/读者索取更多资源

In this review, I first address the basics of gas exchange, water-use efficiency and carbon isotope discrimination in C(3)plant canopies. I then present a case study of water-use efficiency in northern Australian tree species. In general, C(3)plants face a trade-off whereby increasing stomatal conductance for a given set of conditions will result in a higherCO(2)assimilation rate, but a lower photosynthetic water-use efficiency. A common garden experiment suggested that tree species which are able to establish and grow in drier parts of northern Australia have a capacity to use water rapidly when it is available through high stomatal conductance, but that they do so at the expense of low water-use efficiency. This may explain why community-level carbon isotope discrimination does not decrease as steeply with decreasing rainfall on the North Australian Tropical Transect as has been observed on some other precipitation gradients. Next, I discuss changes in water-use efficiency that take place during leaf expansion in C(3)plant leaves. Leaf phenology has recently been recognised as a significant driver of canopy gas exchange in evergreen forest canopies, and leaf expansion involves changes in both photosynthetic capacity and water-use efficiency. Following this, I discuss the role of woody tissue respiration in canopy gas exchange and how photosynthetic refixation of respiredCO(2)can increase whole-plant water-use efficiency. Finally, I discuss the role of water-use efficiency in driving terrestrial plant responses to global change, especially the rising concentration of atmosphericCO(2). In coming decades, increases in plant water-use efficiency caused by risingCO(2)are likely to partially mitigate impacts on plants of drought stress caused by global warming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据