4.7 Article

Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency

期刊

PLANT AND SOIL
卷 433, 期 1-2, 页码 401-413

出版社

SPRINGER
DOI: 10.1007/s11104-018-3852-x

关键词

Metatranscriptomic; mRNA; Gene expression; Functional diversity; Rhizosphere; Nitrogen use efficiency

资金

  1. Ministry for Education and Research [PRIN 2009MWY5F9]
  2. Marie Curie ITN action TRAINBIODIVERSE [289949]
  3. Ente Cassa di Risparmio di Firenze

向作者/读者索取更多资源

Aims Study of the microbial expression profile in the rhizosphere of two contrasting maize lines, differing in the Nitrogen Use efficiency (NUE). Methods The Lo5 and T250 inbred maize characterized by high and low NUE, respectively, were grown in rhizoboxes allowing precise sampling of rhizosphere and bulk soils. We conducted metatranscriptomic of rhizosphere and bulk soil by m-RNA sequencing. Results High activity of bacteria was observed compared to archaea and fungi in both rhizosphere and bulk soils of both maize lines. Proteobacteria and Actinobacteria were involved in all processes, while significant shifts occurred in the expression of Bacteroidetes, Chloroflexi, Firmicutes, Acidobacteria, Cyanobacteria, archaea and fungi, indicating their possible role in specific processes occurring in rhizosphere of two maize lines. Maize plants with different NUE induced changes in microbial processes, especially in N cycling, with high NUE maize favouring ammonification and nitrification processes and low NUE maize inducing expression of genes encoding for denitrifying process, likely favoured by longer N residence time in the rhizosphere. Conclusions Overall our results showed that maize lines with different NUE shaped not only microbial communities but also conditioned the microbial functions and the N cycle in their rhizosphere. While the plant NUE is genetically determined and an inherent plant physiological trait, it also stimulates changes in the microbial community composition and gene expression in the rhizosphere, favouring microbial processes that mineralize and oxidize N in the high NUE maize. These results can improve our understanding on plant-microbe interaction in the rhizosphere of crop plants with potential applications for improving the management practices of the agro-ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据