4.5 Article

Integrated RNA-seq and ChIP-seq analysis reveals a feed-forward loop regulating H3K9ac and key labor drivers in human placenta

期刊

PLACENTA
卷 76, 期 -, 页码 40-50

出版社

W B SAUNDERS CO LTD
DOI: 10.1016/j.placenta.2019.01.010

关键词

RNA-seq; ChIP-seq; Placenta; Cytotrophoblast; Labor drivers

向作者/读者索取更多资源

Background: Chromatin alterations are important mediators of gene expression changes. We have recently shown that activated non-canonical NF-.B signaling (RelB/p52) recruits histone acetyltransferase CBP and deacetylase HDAC1 to selectively acetylate H3K9 (H3K9ac) to induce expression of corticotropin-releasing hormone (CRH) and prostaglandin-endoperoxide synthase-2 (PTGS2) in the human placenta. Both of these genes play a role in initiating parturition in human pregnancy. Methods: We performed chromatin immunoprecipitation followed by gene sequencing (ChIP-seq) in primary term human cytotrophoblast (CTB) with use of antibodies to RelB, CBP, HDAC1 and H3K9ac. We further associated these chromatin alterations with gene expression changes from mid-trimester to term in CTB by RNA sequencing (RNA-seq). Results: We detected a genome-wide differential gene enrichment between mid-trimester and term human placenta. Pathway analysis identified that cytokine-cytokine receptor interaction, NF-kappa B, and TNF are the leading pathways enriched in term placenta and associated with these chromatin alterations. Discussions: Our analysis has provided the first-time characterization of the key players of human placental origin with molecular changes resulting from chromatin modifications, which could drive human labor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据