4.4 Article

Laser propagation in a subcritical foam: Ion and electron heating

期刊

PHYSICS OF PLASMAS
卷 25, 期 12, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.5050531

关键词

-

资金

  1. U.S. Department of Energy by LLNL [DE-AC52-07NA27344]
  2. LLNL Laboratory Directed Research and Development Program [LDRD-17-ERD-118]
  3. agency of the United States government

向作者/读者索取更多资源

We develop a model for laser propagation and heating in a subcritical foam (homogeneous electron density as a fraction of critical n(e,0)/n(c) < 1). Our model describes the partition of energy between ions and electrons in an expanding foam element irradiated by a laser, and we solve for the plasma conditions generated by burning down the foam microstructure. We find that a substantial fraction of laser energy goes into breaking down and homogenizing the foam microstructure, which slows down the laser heat front. We also find that the ion temperature in a plasma generated by burning down a foam can exceed the electron temperature. This is because laser energy is deposited into the expansion kinetic energy of ions as the foam microstructure burns down explosively. The higher ion temperature increases ion-acoustic wave damping which reduces stimulated Brillouin scattering (SBS). We test our model against data from an experiment that shot a subcritical foam with a high intensity laser pulse on the Janus laser facility at LLNL. We find that by modeling the effect of the foam microstructure, we can explain both the experimentally measured laser propagation velocity and the backscattered SBS power. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据