4.8 Article

Hydrodynamic Diffusion in Integrable Systems

期刊

PHYSICAL REVIEW LETTERS
卷 121, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.121.160603

关键词

-

向作者/读者索取更多资源

We show that hydrodynamic diffusion is generically present in many-body, one-dimensional interacting quantum and classical integrable models. We extend the recently developed generalized hydrodynamic (GHD) to include terms of Navier-Stokes type, which leads to positive entropy production and diffusive relaxation mechanisms. These terms provide the subleading diffusive corrections to Euler-scale GHD for the large-scale nonequilibrium dynamics of integrable systems, and arise due to two-body scatterings among quasiparticles. We give exact expressions for the diffusion coefficients. Our results apply to a large class of integrable models, including quantum and classical, Galilean and relativistic field theories, chains, and gases in one dimension, such as the Lieb-Liniger model describing cold atom gases and the Heisenberg quantum spin chain. We provide numerical evaluations in the Heisenberg XXZ spin chain, both for the spin diffusion constant, and for the diffusive effects during the melting of a small domain wall of spins, finding excellent agreement with time-dependent density matrix renormalization group numerical simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据