4.5 Article

Morphology controllable synthesis of hierarchical WO3 nanostructures and C2H2 sensing properties

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physe.2019.01.006

关键词

Hierarchical WO3; Growth mechanism; Gas sensors; C2H2 sensing performances

资金

  1. National Natural Science Foundation of China [51507144]
  2. China Postdoctoral Science Foundation [2015M580771, 2016T90832]
  3. Chongqing Science and Technology Commission (CSTC) [cstc2016jcyjA0400]
  4. Postdoctoral Science Funded Project of Chongqing [Xm2015016]

向作者/读者索取更多资源

In this paper, we reported the morphology controllable synthesis of hierarchical WO3 nanostructures, i.e. nanorods, nanospheres and nanoflowers, via a facile hydrothermal route. All the obtained WO3 nanostructures were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET), respectively. A possible growth mechanism for the three various nanomaterials was proposed in detail. WO3 based gas sensors were fabricated with the synthesized nanomaterials and the gas sensing performances to acetylene (C2H2), one of the fault characteristic gases dissolved in power transformer oil, were systematically measured. It was found that the sensor based on nanosheet-assembled nanoflowers with largest surface (56.74 m(2)g(-1)) exhibits the highest sensing performance including gas response (32.31) and response-recovery time (12 s, 17 s) to 200 ppm C2H2. The results indicate that WO3 sensing materials could be a promising choice for synthesizing high-performance C2H2 sensors for the judgement of the early latent faults of the oil immersed transformer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据