4.4 Article

A Combination of Visudyne and a Lipid-anchored Liposomal Formulation of Benzoporphyrin Derivative Enhances Photodynamic Therapy Efficacy in a 3D Model for Ovarian Cancer

期刊

PHOTOCHEMISTRY AND PHOTOBIOLOGY
卷 95, 期 1, 页码 419-429

出版社

WILEY
DOI: 10.1111/php.13066

关键词

-

资金

  1. [R00 CA175292]
  2. [K99 CA215301]
  3. [R01 CA 156177]
  4. [R01 CA 160998]
  5. [R01CA160098]
  6. [P01 CA 084203]
  7. [R01 23378]

向作者/读者索取更多资源

A major objective in developing new treatment approaches for lethal tumors is to reduce toxicity to normal tissues while maintaining therapeutic efficacy. Photodynamic therapy (PDT) provides a mechanistically distinct approach to treat tumors without the systemic toxicity of chemotherapy drugs. PDT involves the light-based activation of a small molecule, a photosensitizer (PS), to generate reactive molecular species (RMS) that are toxic to target tissue. Depending on the PS localization, various cellular and subcellular components can be targeted, causing selective photodamage. It has been shown that targeted lysosomal photodamage followed by, or simultaneous with, mitochondrial photodamage using two different PS results in a considerable enhancement in PDT efficacy. Here, two liposomal formulations of benzoporphyrin derivative (BPD): (1) Visudyne (clinically approved) and (2) an in-house formulation entrapping a lipid conjugate of BPD are used in combination with direct PS localization to mitochondria, endoplasmic reticulum and lysosomes, enabling simultaneous photodamage to all three organelles using a single wavelength of light. Building on findings by our group, and others, this study demonstrates, for the first time in a 3D model for ovarian cancer, that BPD-mediated photodestruction of lysosomes and mitochondria/ER significantly enhances PDT efficacy at lower light doses than treatment with either PS formulation alone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据