4.8 Article

Surfactant-free preparation of highly stable zwitterionic poly(amido amine) nanogels with minimal cytotoxicity

期刊

ACTA BIOMATERIALIA
卷 30, 期 -, 页码 126-134

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2015.10.037

关键词

Polymer nanoparticles; Nanogels; Inverse nanoprecipitation; pH-responsive; Cellular uptake

资金

  1. province of Overijssel
  2. province of Gelderland
  3. Center for Medical Imaging - North East Netherlands (CMI-NEN)

向作者/读者索取更多资源

Narrowly dispersed zwitterionic poly(amido amine) (PAA) nanogels with a diameter of approximately 100 nm were prepared by a high-yielding and surfactant-free, inverse nanoprecipitation of PAA polymers. The resulting, negatively charged, nanogels (PAA-NG1) were functionalized with N,N-dimethylethylenediamine via EDC/NHS coupling chemistry. This resulted in nanogels with a positive surface charge (PAA-NG2). Both types of nanogels were fluorescently labelled via isothiocyanate coupling. PAA-NG1 displays high colloidal stability both in PBS and Fetal Bovine Serum solution. Moreover, both nanogels exhibit a distinct zwitterionic swelling profile in response to pH changes. Cellular uptake of FITC-labelled nanogels with RAW 264.7, PC-3 and COS-7 cells was evaluated by fluorescence microscopy. These studies showed that nanogel surface charge greatly influences nanogel-cell interactions. The PAA polymer and PAA-NG1 showed minimal cell toxicity as was evaluated by MTT assays. The findings reported here demonstrate that PAA nanogels possess interesting properties for future studies in both drug delivery and imaging. Statement of significance The use of polymeric nanoparticles in biomedical applications such as drug delivery and imaging, shows great potential for medical applications. However, these nanoparticles are often not stable in biological environments. Zwitterionic polymers have shown excellent biocompatibility, but these materials are not easily degradable in biological environments. With the aim of developing a nanoparticle for drug delivery and imaging we synthesized a biomimetic and readily biodegradable zwitterionic polymer, which was incorporated into nanogels. These nanogels showed excellent stability in the presence of serum and minimal cytotoxicity, which was tested in three cell lines. Because of their negative surface charge and excellent serum stability, these nanogels are therefore promising carriers for drug delivery and molecular imaging. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据