4.8 Article

Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies

期刊

ACTA BIOMATERIALIA
卷 31, 期 -, 页码 134-143

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2015.11.047

关键词

Carbon nanotubes; Cardiac differentiation; Electrical stimulation; Embryoid body; Hydrogel

资金

  1. World Premier International Research Center Initiative (WPI), MEXT, Japan

向作者/读者索取更多资源

Carbon nanotubes (CNTs) were aligned in gelatin methacryloyl (GelMA) hydrogels using dielectrophoresis approach. Mouse embryoid bodies (EBs) were cultured in the microwells fabricated on the aligned CNT-hydrogel scaffolds. The GelMA-dielectrophoretically aligned CNT hydrogels enhanced the cardiac differentiation of the EBs compared with the pure GelMA and GelMA-random CNT hydrogels. This result was confirmed by Troponin-T immunostaining, the expression of cardiac genes (i.e., Tnnt2, Nkx2-5, and Actc1), and beating analysis of the EBs. The effect on EB properties was significantly enhanced by applying an electrical pulse stimulation (frequency, 1 Hz; voltage, 3 V; duration, 10 ms) to the EBs for two continuous days. Taken together, the fabricated hybrid hydrogel-aligned CNT scaffolds with tunable mechanical and electrical characteristics offer an efficient and controllable platform for electrically induced differentiation and stimulation of stem cells for potential tissue regeneration and cell therapy applications. Statement of significance Dielectrophoresis approach was used to rapidly align carbon nanotubes (CNTs) in gelatin methacryloyl (GelMA) hydrogels resulting in hybrid GelMA-CNT hydrogels with tunable and anisotropic electrical and mechanical properties. The GelMA-aligned CNT hydrogels may be used to apply accurate and controllable electrical pulses to cell and tissue constructs and thereby regulating their behavior and function. In this work, it was demonstrated that the GelMA hydrogels containing the aligned CNTs had superior performance in cardiac differentiation of stem cells upon applying electrical stimulation in contrast with control gels. Due to broad use of electrical stimulation in tissue engineering and stem cell differentiation, it is envisioned that the GelMA-aligned CNT hydrogels would find wide applications in tissue regeneration and stem cell therapy. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据