4.8 Article

Engineered acellular collagen scaffold for endogenous cell guidance, a novel approach in urethral regeneration

期刊

ACTA BIOMATERIALIA
卷 43, 期 -, 页码 208-217

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2016.07.033

关键词

Tissue engineered; Urethral graft; Collagen; Acellular; Tubular; Rabbit

资金

  1. Department of Pediatrics and Pediatric Surgery at the CHUV
  2. University Malaya Research Grant (UMRG) [RP005G-13HTM]
  3. CTI [14577. 1PFLS-LS]

向作者/读者索取更多资源

The treatment of congenital malformations or injuries of the urethra using existing autologous tissues can be associated with post-operative complications. Using rat-tail collagen, we have engineered an acellular high-density collagen tube. These tubes were made of 2 layers and they could sustain greater burst pressures than the monolayered tubes. Although it remains a weak material this 2 layered tube could be sutured to the native urethra. In 20 male New Zealand white rabbits, 2 cm long grafts were sutured in place after subtotal excision of the urethra. This long-term study was performed in Lausanne (Switzerland) and in Kuala Lumpur (Malaysia). No catheter was placed post-operatively. All rabbits survived the surgical implantation. The animals were evaluated at 1, 3, 6, and 9 months by contrast voiding cysto-urethrography, histological examination and immunohistochemistry. Spontaneous re population of urothelial and smooth muscle cells on all grafts was demonstrated. Cellular organization increased with time, however, 20% of both fistula and stenosis could be observed post-operatively. This off-the shelf scaffold with a promising urethral regeneration has a potential for clinical application. Statement of Significance In this study we have tissue engineered a novel cell free tubular collagen based scaffold and used it as a urethral graft in a rabbit model. The novelty of our technique is that the tube can be sutured. Testing showed better burst pressures and the grafts could then be successfully implanted after a urethral excision. This long term study demonstrated excellent biocompatibility of the 2 cm graft and gradual regeneration with time, challenging the current literature. Finally, the main impact is that we describe an off-the-shelf and cost-effective product with comparable surgical outcome to the cellular grafts. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据