4.8 Article

Phage as versatile nanoink for printing 3-D cell-laden scaffolds

期刊

ACTA BIOMATERIALIA
卷 29, 期 -, 页码 112-124

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2015.10.004

关键词

Phages; Bioprinting; Bioinks; 3-D scaffolds; Tissue engineering; Genetic engineering

资金

  1. National Research Foundation of Korea - Korean Government [NRF-2014S1A2A2027641]
  2. Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea [A120942]
  3. National Research Foundation of Korea [2014S1A2A2027641] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Bioprinting is an emerging technology for producing tissue-mimetic 3-D structures using cell-containing hydrogels (bioink). Various synthetic and natural hydrogels with key characteristics, including biocompatibility, biodegradability, printability and crosslinkability, have been employed as ink materials in bioprinting. Choosing the right cell-containing bioink material is the most essential step for fabricating 3-D constructs with a controlled mechanical and biochemical microenvironment that can lead to successful tissue regeneration and repair. Here, we demonstrate that the genetically engineered M13 phage holds great potential for use as a versatile nanoink for printing 3-D cell-laden matrices. In particular, M13 phages displaying integrin-binding (GRGDS) and calcium-binding (DDYD) domains on their surface were blended with alginate to successfully form Ca2+-crosslinked hydrogels. Furthermore, 3-D cell-laden scaffolds with high cell viability were generated after optimizing the printing process. The MC3T3-E1 cells within these scaffolds showed enhanced proliferation and differentiation rates that increased proportionally with the concentration of phages in the 3-D matrices compared with the rates of cells in pure alginate scaffolds. Statement of significance Bioprinting is an emerging technology for producing tissue-mimetic 3-D structures using cell-containing hydrogels called bioink. Choosing the right bioink is essential for fabricating 3-D structures with controlled mechanical and biochemical properties which lead to successful tissue regeneration. Therefore, there is a growing demand for a new bioink material that can be designed from molecular level. Here, we demonstrate that genetically engineered M13 phage holds great potential for use as versatile bioink. The phage-based bioink benefits from its replicability, self-assenibling property, and tunable molecular design and enables bioprinted scaffolds to exhibit improved cell viability, proliferation and differentiation. This study opens the door for the development of genetically tunable nanofibrous bioink materials which closely mimic natural structural proteins in the extracellular matrix. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据