4.6 Article

Identification of novel multi-stage histone deacetylase (HDAC) inhibitors that impair Schistosoma mansoni viability and egg production

期刊

PARASITES & VECTORS
卷 11, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s13071-018-3268-8

关键词

Schistosoma mansoni; HDAC inhibitors; Parasite reproductive systems

资金

  1. CNR (National Research Council)-CNCCS (Collezione Nazionale di Composti Chimici e Centro di screening) [DSB.AD011.001.003]
  2. Regione Lazio/CNR/CNCCS - Development of scientific and technological platforms and innovative molecular libraries for rare and neglected diseases: Schistosoma and HDAC inhibitors screening [DCM.AD003.014.002]
  3. Ministero dell'Istruzione, dell'Universita e della Ricerca [PRIN 20154JRJPP_006]

向作者/读者索取更多资源

BackgroundNovel anti-schistosomal multi-stage drugs are needed because only a single drug, praziquantel, is available for the treatment of schistosomiasis and is poorly effective on larval and juvenile stages of the parasite. Schistosomes have a complex life-cycle and multiple developmental stages in the intermediate and definitive hosts. Acetylation and deacetylation of histones play pivotal roles in chromatin structure and in the regulation of transcription in eukaryotic cells. Histone deacetylase (HDAC) inhibitors modulate acetylation of several other proteins localized both in the nucleus and in the cytoplasm and therefore impact on many signaling networks and biological processes. Histone post-translational modifications may provide parasites with the ability to readily adapt to changes in gene expression required for their development and adaptation to the host environment. The aim of the present study was to screen a HDAC class I inhibitor library in order to identify and characterize novel multi-stage hit compounds.MethodsWe used a high-throughput assay based on the quantitation of ATP in the Schistosoma mansoni larval stage (schistosomula) and screened a library of 1500 class I HDAC inhibitors. Subsequently, a few hits were selected and further characterized by viability assays and phenotypic analyses on adult parasites by carmine red and confocal microscopy.ResultsThree compounds (SmI-124, SmI-148 and SmI-558) that had an effect on the viability of both the schistosomula larval stage and the adult worm were identified. Treatment with sub-lethal doses of SmI-148 and SmI-558 also decreased egg production. Moreover, treatment of adult parasites with SmI-148, and to a lesser extent Sm-124, was associated with histone hyperacetylation. Finally, SmI-148 and SmI-558 treatments of worm pairs caused a phenotype characterized by defects in the parasite reproductive system, with peculiar features in the ovary. In addition, SmI-558 induced oocyte- and vitelline cell-engulfment and signs of degeneration in the uterus and/or oviduct.ConclusionsWe report the screening of a small HDAC inhibitor library and the identification of three novel compounds which impair viability of the S. mansoni larval stage and adult pairs. These compounds are useful tools for studying deacetylase activity during parasite development and for interfering with egg production. Characterization of their specificity for selected S. mansoni versus human HDAC could provide insights that can be used inoptimization and compound design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据