4.6 Article

Effect of variation of length-to-depth ratio and Mach number on the performance of a typical double cavity scramjet combustor

期刊

ACTA ASTRONAUTICA
卷 128, 期 -, 页码 540-550

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actaastro.2016.08.010

关键词

Scramjet; Double cavity combustor; k-epsilon model; Length-to-depth ratio

向作者/读者索取更多资源

The two equation standard k-epsilon turbulence model and the two-dimensional compressible Reynolds Averaged Navier-Stokes (RANS) equations have been used to computationally simulate the double cavity scramjet combustor. Here all the simulations are performed by using ANSYS 14-FLUENT code. At the same time, the validation of the present numerical simulation for double cavity has been performed by comparing its result with the available experimental data which is in accordance with the literature. The results are in good agreement with the schlieren image and the pressure distribution curve obtained experimentally. However, the pressure distribution curve obtained numerically is under-predicted in 5 locations by numerical calculation. Further, investigations on the variations of the effects of the length -to-depth ratio of cavity and Mach number on the combustion characteristics has been carried out. The present results show that there is an optimal length-to-depth ratio for the cavity for which the performance of combustor significantly improves and also efficient combustion takes place within the combustor region. Also, the shifting of the location of incident oblique shock took place in the downstream of the H-2 inlet when the Mach number value increases. But after achieving a critical Mach number range of 2-2.5, the further increase in Mach number results in lower combustion efficiency which may deteriorate the performance of combustor. (C) 2016 IAA. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据