4.6 Article

Correlations of strongly interacting one-dimensional ultracold dipolar few-boson systems in optical lattices

期刊

NEW JOURNAL OF PHYSICS
卷 21, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/aafa93

关键词

dipolar boson; quantum phases; coherence properties; correlation functions; optical lattice

资金

  1. Department of Science and Technology, Government of India
  2. Sao Paulo state research foundation (FAPESP)
  3. Austrian Science Foundation (FWF) [P 32033]
  4. Wiener Wissenschafts-und TechnologieFonds (WWTF) [MA16-066]
  5. CePOF/USP

向作者/读者索取更多资源

Strongly interacting finite ensembles of dipolar bosons in commensurately filled one-dimensional optical lattices exhibit diverse quantum phases that are rich in physics. As the strength of the long-range boson-boson interaction increases, the system transitions across different phases: from a superfluid, through a Mott-insulator and a Tonks-Girardeau gas to a crystal state. The signature of these phases and their transitions can be unequivocally identified by an experimentally detectable order parameter, recently described in Phys. Rev. A 98 235301 (2018[33]). Herein, we calculate the momentum distributions and the normalized Glauber correlation functions of dipolar bosons in a one-dimensional optical lattice in order to characterize all their phases. To understand the behavior of the correlations across the phase transitions, we first investigate the eigenfunctions and eigenvalues of the one-body reduced density matrix as a function of the dipolar interaction strength. We then analyze the real- and momentum-space Glauber correlation functions, thereby gaining a spatially and momentum-resolved insight into the coherence properties of these quantum phases. We find an intriguing structure of non-local correlations that, independently of other observables, reveal the phase transitions of the system. In particular, spatial localization and momentum delocalization accompany the formation of correlated islands in the density as interactions become stronger. Our study showcases that precise control of intersite correlations is possible through the manipulation of the depth of the lattice, while intrasite correlations can be influenced by changing the dipolar interaction strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据