4.8 Article

Cracking of Polycrystalline Graphene on Copper under Tension

期刊

ACS NANO
卷 10, 期 10, 页码 9616-9625

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b05101

关键词

graphene; channel cracks; fracture energy; stress transfer; interfacial shear stress

资金

  1. National Science Foundation [CMMI-1130261, EEC-1160494]
  2. Rashid Engineering Regents Chair

向作者/读者索取更多资源

Roll-to-roll manufacturing of graphene is attractive because of its compatibility with flexible substrates and its promise of high-speed production. Several prototype roll-to-roll systems have been demonstrated, which produce large-scale graphene on polymer films for transparent conducting film applications.1-4 In spite of such progress, the quality of graphene may be influenced by the tensile forces that are applied during roll to-roll transfer. To address this issue, we conducted in situ tensile experiments on copper foil coated with graphene grown by chemical vapor deposition, which were carried out in a scanning electron microscope. Channel cracks, which were perpendicular to the loading direction, initiated over the entire graphene monolayer at applied tensile strain levels that were about twice the yield strain of the (annealed) copper. The spacing between the channel cracks decreased with increasing applied strain, and new graphene wrinkles that were parallel to the loading direction appeared. These morphological features were confirmed in more detail by atomic force microscopy. Raman spectroscopy was used to determine the strain in the graphene, which was related to the degradation of the graphene/copper interface. The experimental data allowed the fracture toughness of graphene and interfacial properties of the graphene/copper interface to be extracted based on classical channel crack and shear-lag models. This study not only deepens our understanding of the mechanical and interfacial behavior of graphene on copper but also provides guidelines for the design of roll-to-roll processes for the dry transfer of graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据