4.8 Article

Increased Gold Nanoparticle Retention in Brain Tumors by in Situ Enzyme-Induced Aggregation

期刊

ACS NANO
卷 10, 期 11, 页码 10086-10098

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b05070

关键词

brain tumors; legumain; click cycloaddition; gold nanoparticles; tumor microenvironment

资金

  1. National Basic Research Program of China (973 Program) [2013CB932504]

向作者/读者索取更多资源

The treatment of brain tumors remains a challenge due to the limited accumulation of drugs and nanoparticles. Here, we triggered the aggregation of gold nanoparticles (AuNPs) using legumain to enhance the retention of chemotherapeutics in brain tumors. This nanoplatform, AuNPs-A&C, is comprised of Ala-Ala-Asn-Cys-Lys modified AuNPs (AuNPs-AK) and 2-cyano-6-amino-benzothiazole modified AuNPs (AuNPs-CABT). AuNPs-AK could be hydrolyzed to expose the 1,2-thiolamino groups on AuNPs-AK in the presence of legumain, which occurs by a click cycloaddition with the contiguous cyano group on AuNPs-CABT, resulting in formation of AuNPs aggregates. This strategy led to an enhanced retention of the AuNPs in glioma cells both in vitro and in vivo due to the blocking of nanoparticle exocytosis and minimizing nanoparticle backflow to the bloodstream. After conjugation of doxorubicin (DOX) via a pH-sensitive linker to AuNPs-A&C, the efficiency for treating glioma was improved. The median survival time for the DOX-linked AuNPs-A&C increased to 288% in comparison to the saline group. We further show the use of the AuNPs-A&C for optical imaging applications. In conclusion, we provide a strategy to increase nanoparticle tumor accumulation with the potential to improve therapeutic outcome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据