4.6 Article

Ranking nodes in complex networks based on local structure and improving closeness centrality

期刊

NEUROCOMPUTING
卷 336, 期 -, 页码 36-45

出版社

ELSEVIER
DOI: 10.1016/j.neucom.2018.04.086

关键词

Node ranking; Centrality measures; Complex network; Influential nodes; Diffusion models; Community detection; Viral marketing

向作者/读者索取更多资源

In complex networks, the nodes with most spreading ability are called influential nodes. In many applications such as viral marketing, identification of most influential nodes and ranking them based on their spreading ability is of vital importance. Closeness centrality is one of the most commonly used methods to identify influential spreaders in social networks. However, this method is time-consuming for dynamic large-scale networks and has high computational complexity. In this paper, we propose a novel ranking algorithm which improves closeness centrality by taking advantage of local structure of nodes and aims to decrease the computational complexity. In our proposed method, at first, a community detection algorithm is applied to extract community structures of the network. Thereafter, after ignoring the relationship between communities, one best node as local critical node for each community is extracted according to any centrality measure. Then, with the consideration of interconnection links between communities, another best node as gateway node is found. Finally, the nodes are sorted and ranked based on computing the sum of the shortest path length of nodes to obtained critical nodes. Our method can detect the most spreader nodes with high diffusion ability and low time complexity, which make it appropriately applicable to large-scale networks. Experiments on synthetic and real-world connected networks under common diffusion models demonstrate the effectiveness of our proposed method in comparison with other methods. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据