4.8 Article

Tuning the Selectivity of Dendron Micelles Through Variations of the Poly(ethylene glycol) Corona

期刊

ACS NANO
卷 10, 期 7, 页码 6905-6914

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b02708

关键词

dendron micelle; targeted drug delivery; PEG corona; self-assembly

资金

  1. University of Illinois at Chicago (UIC)
  2. NCI/NIH [1R01CA182528]
  3. NSF [DMR-1409161, DMR-1309765]
  4. Alex's Lemonade Stand Foundation for Childhood Cancer
  5. Leukemia & Lymphoma Society
  6. UIC-LAS Award for Faculty in the Sciences
  7. NIH [C06RR15482]
  8. UIC
  9. LASURI
  10. Camille and Henry Dreyfus Foundation

向作者/读者索取更多资源

Engineering controllable cellular interactions into nanoscale drug delivery systems is key to enable their full potential. Here, using folic acid (FA) as a model targeting ligand and dendron micelles (DM) as a nanoparticle (NP) platform, we present a comprehensive experimental and modeling investigation of the structural properties of DMs that govern the formation of controllable, FA-mediated cellular interactions. Our experimental results demonstrate that a high level of control over the specific cell interactions of FA-targeted DMs can be achieved through modulation of the PEG corona length and the FA content. Using various molecular weight PEGs (0.6K, 1K, and 2K g/mol) and contents of dendron-FA conjugate incorporated into DMs (0, 5, 10, 25 wt %), the cell interactions of the targeted DMs could be controlled to exhibit minimal to >25-fold enhancement over nontargeted DMs. Molecular dynamics simulations indicated that structural characteristics, such as solvent accessible surface area of FA, local PEG density near FA, and FA mobility, account in part for the experimental differences in cellular interactions. The molecular structure that allows FA to depart from the surface of DMs to facilitate the initial cell surface binding was revealed to be the most important contributor for determining FA-mediated cellular interactions of DMs. The modular properties of DMs in controlling their specific cell interactions support the potential of DMs as a delivery platform and offer design cues for future development of targeted NPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据