4.8 Article

Achieving Fully Reversible Conversion in MoO3 for Lithium Ion Batteries by Rational Introduction of CoMoO4

期刊

ACS NANO
卷 10, 期 11, 页码 10106-10116

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b05150

关键词

molybdenum oxide; hybrid materials; pores; catalysis; lithium ion batteries

资金

  1. National Natural Science Foundation of China [21601014, 21471016, 21271023]
  2. 111 Project [B07012]

向作者/读者索取更多资源

Electrode materials based on conversion reactions with lithium ions generally show much higher energy density. One of the main challenges in the design of these electrode materials is to improve initial Coulombic efficiency and alleviate the volume changes during the lithiation-delithiation processes. Here, we achieve fully reversible conversion in MoO3 as an anode for lithium ion batteries by the hybridization of CoMoO4. The porous MoO3-CoMoO4 microspheres are constructed by homogeneously dispersed MoO3 and CoMoO4 subunits and their lithiation/delithiation processes were studied by ex situ TEM to reveal the mechanism of the reversible conversion reaction. Co nanoparticles are in situ formed from CoMoO4 during the lithiation process, which then act as the catalyst to guarantee the reversible decomposition of Li2O, thus effectively improving the reversible specific capacity and initial Coulombic efficiency. Moreover, the pores in MoO3-CoMoO4 microspheres also greatly enhance their mechanical strength and provide enough cavity to alleviate volume changes during repeated cycling. Such a design concept makes MoO3 to be a potential promising anode in practical applications. The full cell (LiFePO4 cathode/MoO3-CoMoO4 anode) displays a high capacity up to 155.7 mAh g(-1) at 0.1 C and an initial Coulombic efficiency as high as 97.35%. This work provides impetus for further development in electrochemical charge storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据