4.8 Article

Manipulation of Self-Assembled Nanostructure Dimensions in Molecular Janus Particles

期刊

ACS NANO
卷 10, 期 7, 页码 6585-6596

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b01336

关键词

Janus particles; self-assembly; nanobelts; nanosheets; polyoxometalates

资金

  1. National Science Foundation [DMR-1408872]

向作者/读者索取更多资源

The ability to manipulate self-assembly of molecular building blocks is the key to achieving precise bottom-up fabrications of desired nanostructures. Herein, we report a rational design, facile synthesis, and self assembly of a series of molecular Janus particles (MJPs) constructed by chemically linking alpha-Keggin-type polyoxometalate (POM) nanoclusters with functionalized polyhedral oligomeric silsesquioxane (POSS) cages. Diverse nanostructures were obtained by tuning secondary interactions among the building blocks and solvents via three factors: solvent polarity, surface functionality of POSS derivatives, and molecular topology. Self-assembled morphologies of KPOM-BPOSS (B denotes isobutyl groups) were found dependent on solvent polarity. In acetonitrile/water mixtures with a high dielectric constant, colloidal nanoparticles with nanophase-separated internal lamellar structures quickly formed, which gradually turned into one-dimensional nanobelt crystals upon aging, while stacked crystalline lamellae were dominantly observed in less polar methanol/chloroform solutions. When the crystallizable BPOSS was replaced with noncrystallizable cyclohexyl-functionalized CPOSS, the resulting KPOM-CPOSS also formed colloidal spheres; however, it failed to further evolve into crystalline nanobelt structures. In less polar solvents, KPOM-CPOSS crystallized into isolated two-dimensional nanosheets, which were composed of two inner crystalline layers of Keggin POM covered by two monolayers of amorphous CPOSS. In contrast, self-assembly of KPOM-2BPOSS was dominated by crystallization of the BPOSS cages, which was hardly sensitive to solvent polarity. The BPOSS cages formed the crystalline inner bilayer, sandwiched by two outer layers of Keggin POM clusters. These results illustrate a rational strategy to purposely fabricate self-assembled nanostructures with diverse dimensionality from MJPs with controlled molecular composition and topology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据