4.7 Article

High-fidelity probing of the structure and heterogeneity of extracellular vesicles by resonance-enhanced atomic force microscopy infrared spectroscopy

期刊

NATURE PROTOCOLS
卷 14, 期 2, 页码 576-593

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41596-018-0109-3

关键词

-

资金

  1. University of Sydney

向作者/读者索取更多资源

Extracellular vesicles (EVs) are highly specialized nanoscale assemblies that deliver complex biological cargos to mediate intercellular communication. EVs are heterogeneous, and characterization of this heterogeneity is paramount to understanding EV biogenesis and activity, as well as to associating them with biological responses and pathologies. Traditional approaches to studying EV composition generally lack the resolution and/or sensitivity to characterize individual EVs, and therefore the assessment of EV heterogeneity has remained challenging. We have recently developed an atomic force microscope IR spectroscopy (AFM-IR) approach to probe the structural composition of single EVs with nanoscale resolution. Here, we provide a step-by-step procedure for our approach and show its power to reveal heterogeneity across individual EVs, within the same population of EVs and between different EV populations. Our approach is label free and able to detect lipids, proteins and nucleic acids within individual EVs. After isolation of EVs from cell culture medium, the protocol involves incubation of the EV sample on a suitable substrate, setup of the AFM-IR instrument and collection of nano-IR spectra and nano-IR images. Data acquisition and analyses can be completed within 24 h, and require only a basic knowledge of spectroscopy and chemistry. We anticipate that new understanding of EV composition and structure through AFM-IR will contribute to our biological understanding of EV biology and could find application in disease diagnosis and the development of EV therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据