4.8 Article

Even denominator fractional quantum Hall states in higher Landau levels of graphene

期刊

NATURE PHYSICS
卷 15, 期 2, 页码 154-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41567-018-0355-x

关键词

-

资金

  1. Humboldt Foundation
  2. Villum Foundation
  3. Danish National Research Foundation
  4. European Research Council under the European Union [1104931001]
  5. US Department of Energy [DE-SC0005042]
  6. Elemental Strategy Initiative [JPMJCR15F3]

向作者/读者索取更多资源

An important development in the field of the fractional quantum Hall effect was the proposal that the 5/2 state observed in the Landau level with orbital index n = 1 of two-dimensional electrons in a GaAs quantum well(1) originates from a chiral p-wave paired state of composite fermions that are topological bound states of electrons and quantized vortices. The excitations of this state, which is theoretically described by a 'Pfaffian' wavefunction(2) or its hole partner called the anti-Pfaffian(3,4), are neither fermions nor bosons but Majorana quasiparticles obeying non-Abelian braid statistics(5). This has inspired ideas for fault-tolerant topological quantum computation(6) and has also instigated a search for other states with exotic quasiparticles. Here we report experiments on monolayer graphene that show clear evidence for unexpected even denominator fractional quantum Hall physics in the n = 3 Landau level. We numerically investigate the known candidate states for the even denominator fractional quantum Hall effect, including the Pfaffian, the particle-hole symmetric Pfaffian and the 221-parton states, and conclude that, among these, the 221-parton appears a potentially suitable candidate to describe the experimentally observed state. Like the Pfaffian, this state is believed to harbour quasi-particles with non-Abelian braid statistics(7).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据