4.8 Article

Structural plasticity of D3-D14 ubiquitin ligase in strigolactone signalling

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Review Biochemistry & Molecular Biology

Found in Translation: Applying Lessons from Model Systems to Strigolactone Signaling in Parasitic Plants

Shelley Lumba et al.

TRENDS IN BIOCHEMICAL SCIENCES (2017)

Article Multidisciplinary Sciences

DWARF14 is a non-canonical hormone receptor for strigolactone

Ruifeng Yao et al.

NATURE (2016)

Article Biochemistry & Molecular Biology

An histidine covalent receptor and butenolide complex mediates strigolactone perception

Alexandre de Saint Germain et al.

NATURE CHEMICAL BIOLOGY (2016)

Review Plant Sciences

Strigolactones, a Novel Carotenoid-Derived Plant Hormone

Salim Al-Babili et al.

ANNUAL REVIEW OF PLANT BIOLOGY, VOL 66 (2015)

Article Multidisciplinary Sciences

Convergent evolution of strigolactone perception enabled host detection in parasitic plants

Caitlin E. Conn et al.

SCIENCE (2015)

Article Multidisciplinary Sciences

Probing strigolactone receptors in Striga hermonthica with fluorescence

Yuichiro Tsuchiya et al.

SCIENCE (2015)

Article Multidisciplinary Sciences

Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro

Satoko Abe et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2014)

Article Cell Biology

Structures of D14 and D14L in the strigolactone and karrikin signaling pathways

Megumi Kagiyama et al.

GENES TO CELLS (2013)

Article Biochemistry & Molecular Biology

Confirming Stereochemical Structures of Strigolactones Produced by Rice and Tobacco

Xiaonan Xie et al.

MOLECULAR PLANT (2013)

Article Multidisciplinary Sciences

DWARF 53 acts as a repressor of strigolactone signalling in rice

Liang Jiang et al.

NATURE (2013)

Article Multidisciplinary Sciences

D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling

Feng Zhou et al.

NATURE (2013)

Article Multidisciplinary Sciences

F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana

David C. Nelson et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2011)

Article Biochemical Research Methods

Features and development of Coot

P. Emsley et al.

ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY (2010)

Article Biochemical Research Methods

PHENIX: a comprehensive Python-based system for macromolecular structure solution

Paul D. Adams et al.

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY (2010)

Review Plant Sciences

New genes in the strigolactone-related shoot branching pathway

Christine Anne Beveridge et al.

CURRENT OPINION IN PLANT BIOLOGY (2010)

Article Plant Sciences

Structural Requirements of Strigolactones for Hyphal Branching in AM Fungi

Kohki Akiyama et al.

PLANT AND CELL PHYSIOLOGY (2010)

Article Plant Sciences

d14, a Strigolactone-Insensitive Mutant of Rice, Shows an Accelerated Outgrowth of Tillers

Tomotsugu Arite et al.

PLANT AND CELL PHYSIOLOGY (2009)

Article Multidisciplinary Sciences

Strigolactone inhibition of shoot branching

Victoria Gomez-Roldan et al.

NATURE (2008)

Article Multidisciplinary Sciences

Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi

K Akiyama et al.

NATURE (2005)