4.8 Article

Effect of Heteroatom Substitution on Transport in Alkanedithiol-Based Molecular Tunnel Junctions: Evidence for Universal Behavior

期刊

ACS NANO
卷 11, 期 1, 页码 569-578

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b06623

关键词

molecular tunnel junctions; heteroatom substitution; single-level model; electronic coupling; quantum chemical calculations; transition voltage; universal behavior out of equilibrium

资金

  1. U.S. National Science Foundation [CHE-1213876]
  2. Deutsche Forschungsgemeinschaft [BA 1799/3-1]

向作者/读者索取更多资源

The transport properties of molecular junctions based on alkanedithiols with three different methylene chain lengths were compared with junctions based on similar chains wherein every third -CH2- was replaced with O or S, that is, following the general formula HS(CH2CH2X)(n)CH2CH2SH, where X = CH2, O, or S and n = 1, 2, or 3. Conducting probe atomic force microscopy revealed that the low bias resistance of the chains increased upon substitution in the order CH2 < O < S. This change in resistance is ascribed to the observed identical trend in contact resistance, R-c, whereas the exponential prefactor beta (length sensitivity) was essentially the same for all chains. Using an established, analytical single-level model, we computed the effective energy offset epsilon(h) (i.e., Fermi level relative to the effective HOMO level) and the electronic coupling strength Gamma from the current-voltage (I-V) data. The epsilon(h) values were only weakly affected by heteroatom substitution, whereas the interface coupling strength Gamma varied by over an order of magnitude. Consequently, we ascribe the strong variation in R-c to the systematic change in Gamma. Quantum chemical calculations reveal that the HOMO density shifts from the terminal SH groups for the alkanedithiols to the heteroatoms in the substituted chains, which provides a plausible explanation for the marked decrease in Gamma for the dithiols with electron-rich heteroatoms. The results indicate that the electronic coupling and thus the resistance of alkanedithiols can be tuned by substitution of even a single atom in the middle of the molecule. Importantly, when appropriately normalized, the experimental I-V curves were accurately simulated over the full bias range (+/- 1.5 V) using the single-level model with no adjustable parameters. The data could be collapsed to a single universal curve predicted by the model, providing clear evidence that the essential physics is captured by this analytical approach and supporting its utility for molecular electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据