4.8 Article

Facile Synthesis of Silver Nanocubes with Sharp Corners and Edges in an Aqueous Solution

期刊

ACS NANO
卷 10, 期 11, 页码 9861-9870

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b05776

关键词

silver; nanocube; aqueous method; one-pot synthesis; silver chloride

资金

  1. NSF [DMR-1506018]
  2. Georgia Institute of Technology
  3. China Scholarship Council
  4. Direct For Mathematical & Physical Scien
  5. Division Of Materials Research [1505400] Funding Source: National Science Foundation

向作者/读者索取更多资源

It remains a challenge to synthesize Ag nanocubes in an aqueous system, although the polyol process was successfully adopted more than one decade ago. Here, we report an aqueous method for the synthesis of Ag nanocubes with an average edge length of 35-95 nm. It involves the formation of AgCl octahedra by mixing CF3COOAg with cetyltrimethylammonium chloride, followed by the nucleation and growth of Ag nanocrystals in the presence of ascorbic acid (AA) and FeCl3. The Fe3+/Fe2+ redox pair is responsible for the removal of multiply twinned seeds through oxidative etching. The Cl- ions play two critical roles in the nucleation and growth of Ag nanocubes with a single-crystal structure. First, the Cl- ions react with Ag+ ions to generate nanometer-sized AgCl octahedra in the initial stage of a synthesis. In the presence of room light and a proper reducing agent such as AA, the AgCl can be reduced to generate Ag nuclei followed by their evolution into single-crystal seeds and then Ag nanocrystals. Second, the Cl- ions can act as a specific capping agent toward the Ag(100) surface, enabling the formation of Ag nanocubes with sharp corners and edges. Based on the results from a set of time-lapse studies and control experiments, we formulate a plausible mechanism to account for the formation of Ag nanocubes that resembles the formation and development of latent image centers in silver halide grains in the photographic process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据