4.8 Article

Efficient radical-based light-emitting diodes with doublet emission

期刊

NATURE
卷 563, 期 7732, 页码 536-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41586-018-0695-9

关键词

-

资金

  1. National Key R&D Program of China [2016YFB0401001]
  2. National Natural Science Foundation of China [51673080, 91233113]
  3. National Key Basic Research and Development Program of China (973 programme) [2015CB655003]
  4. EPSRC [EP/M01083X/1, EP/M005143/1]
  5. Jesus College, Cambridge
  6. China Scholarship Council (CSC)
  7. Talents Cultivation Program (Jilin University, China)

向作者/读者索取更多资源

Organic light-emitting diodes (OLEDs)(1-5), quantum-dot-based LEDs(6-10), perovskite-based LEDs(11-13) and micro-LEDs(14,15) have been championed to fabricate lightweight and flexible units for next-generation displays and active lighting. Although there are already some high-end commercial products based on OLEDs, costs must decrease whilst maintaining high operational efficiencies for the technology to realise wider impact. Here we demonstrate efficient action of radical-based OLEDs(16), whose emission originates from a spin doublet, rather than a singlet or triplet exciton. While the emission process is still spin-allowed in these OLEDs, the efficiency limitations imposed by triplet excitons are circumvented for doublets. Using a luminescent radical emitter, we demonstrate an OLED with maximum external quantum efficiency of 27 per cent at a wavelength of 710 nanometres-the highest reported value for deep-red and infrared LEDs. For a standard closed-shell organic semiconductor, holes and electrons occupy the highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs), respectively, and recombine to form singlet or triplet excitons. Radical emitters have a singly occupied molecular orbital (SOMO) in the ground state, giving an overall spin-1/2 doublet. If-as expected on energetic grounds-both electrons and holes occupy this SOMO level, recombination returns the system to the ground state, giving no light emission. However, in our very efficient OLEDs, we achieve selective hole injection into the HOMO and electron injection to the SOMO to form the fluorescent doublet excited state with near-unity internal quantum efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据