4.8 Article

Low-Temperature-Processed Brookite-Based TiO2 Heterophase Junction Enhances Performance of Planar Perovskite Solar Cells

期刊

NANO LETTERS
卷 19, 期 1, 页码 598-604

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.8b04744

关键词

Low-temperature processing; brookite TiO2 nanoparticles; TiO2 heterophase junction; planar perovskite solar cells

资金

  1. Tokai University General Research Organization

向作者/读者索取更多资源

In the design of electron-transport layers (ETLs) to enhance the efficiency of planar perovskite solar cells (PSCs), facile electron extraction and transport are important features. Here, we consider the effects of different titanium oxide (T102) polymorphs, anatase and brookite. We design and fabricate high-phase-purity, single-crystalline, highly conductive, and low temperature (<180 degrees C)-processed brookite-based TiO2 heterophase junctions on fluorine-doped tin oxide (FTO) as the substrate. We test and compare single-phase anatase (A) and brookite (B) and heterophase anatase brookite (AB) and brookite-anatase (BA) as ETLs in PSCs. The power-conversion efficiencies (PCEs) of PSCs with low-temperature-processed single-layer FTO-B as the ETL were as high as 14.92%, which is the highest reported efficiency of FTO-B-based single-layer PSC. This implies that FTO-B serves as an active phase and can be a potential candidate as an n-type ETL scaffold in planar PSCs. Moreover, the surface of highly crystalline brookite TiO2 exhibits a tendency toward interparticle necking, leading to the formation of compact scaffolds. Furthermore, PSCs with heterophase junction FTO-AB ETLs exhibited PCEs as high as 16.82%, which is superior to those of PSCs with single-phase anatase (FTO-A) and brookite (FTO-B) as the ETLs (13.86% and 14.92%, respectively). In addition, the PSCs with FTO-AB exhibited improved efficiency and decreased hysteresis compared with those with FTO-BA (13.45%) due to the suitable band alignment with the perovskite layer, which resulted in superior photogenerated charge-carrier extraction and reduced charge accumulation at the interface between the heterophase junction and perovskite. Thus, the present work presents an effective strategy by which to develop heterophase junction ETLs and manipulate the interfacial energy band to further improve the performance of planar PSCs and enable the clean and eco-friendly fabrication of low-cost mass production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据