4.8 Article

Modulation of Domain Size in Polycrystalline n-Type Dicyanoperylene Mono- and Bilayer Transistors

期刊

ACS NANO
卷 10, 期 4, 页码 4268-4273

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.5b07742

关键词

organic field-effect transistors; self-assembly; solution processing; charge carrier transport; dielectric surface roughness

向作者/读者索取更多资源

A single molecular layer (monolayer) of organic semiconductors is proven to be sufficient to create a conducting channel for charge carriers in field-effect transistors, which is an ideal platform to investigate the correlation between molecular self-assembly and device performance. Herein, ultrathin films including mono- and bilayers of an n-type dicyanoperylene (PDI8-CN2) are solution processed by dip-coating. The domain size of the polycrystalline layers is modulated via the surface roughness of the dielectric within an extremely narrow window from 0.15 to 0.39 nm. When the surface roughness is varied from smooth to rough, the domain size and molecular order in the monolayer are significantly decreased, leading to the reduction in electron mobility by 3 orders of magnitude. On the contrary, a lower roughness dependence is observed in the case of the bilayers, with only a slight difference in domain size and charge carrier transport. On the smooth surface, the bilayers exhibit a transistor performance identical to that of the bulk film, confirming that the first few layers near the dielectric dominate the charge carrier transport. Additionally, these results provide insights into the intrinsic role of the interfacial microstructure of small molecular organic semiconductors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据