4.6 Article

Strong Tetrel Bonds: Theoretical Aspects and Experimental Evidence

期刊

MOLECULES
卷 23, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/molecules23102642

关键词

noncovalent interaction; tetrel-bond; sigma-hole; electrostatic potential; ab initio

向作者/读者索取更多资源

In recent years, noncovalent interactions involving group-14 elements of the periodic table acting as a Lewis acid center (or tetrel-bonding interactions) have attracted considerable attention due to their potential applications in supramolecular chemistry, material science and so on. The aim of the present study is to characterize the geometry, strength and bonding properties of strong tetrel-bond interactions in some charge-assisted tetrel-bonded complexes. Ab initio calculations are performed, and the results are supported by the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) approaches. The interaction energies of the anionic tetrel-bonded complexes formed between XF3M molecule (X=F, CN; M=Si, Ge and Sn) and A(-) anions (A(-) = F-, Cl-, Br-, CN-, NC- and N-3(-)) vary between-16.35 and -96.30 kcal/mol. The M atom in these complexes is generally characterized by pentavalency, i.e., is hypervalent. Moreover, the QTAIM analysis confirms that the anionic tetrel-bonding interaction in these systems could be classified as a strong interaction with some covalent character. On the other hand, it is found that the tetrel-bond interactions in cationic tetrel-bonded [p-NH3(C6H4)MH3](+) center dot center dot center dot Z and [p-NH3(C6F4)MH3](+) center dot center dot center dot Z complexes (M=Si, Ge, Sn and Z=NH3, NH2CH3, NH2OH and NH2NH2) are characterized by a strong orbital interaction between the filled lone-pair orbital of the Lewis base and empty BD*(M-C) orbital of the Lewis base. The substitution of the F atoms in the benzene ring provides a strong orbital interaction, and hence improved tetrel-bond interaction. For all charge-assisted tetrel-bonded complexes, it is seen that the formation of tetrel-bond interaction is accompanied bysignificant electron density redistribution over the interacting subunits. Finally, we provide some experimental evidence for the existence of such charge-assisted tetrel-bond interactions in crystalline phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据