4.5 Review

TRP channels interaction with lipids and its implications in disease

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
卷 1848, 期 9, 页码 1818-1827

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamem.2015.03.022

关键词

Neuronal signaling; Nociception; Membrane transduction; Structure-function; Channel gating; Thermodynamics

资金

  1. Spanish Ministerio de Economia y Competitividad (MINECO) [BFU2012-39092-C02-01]
  2. CONSOLIDER-INGENIO Program [CSD2008-00005]
  3. Generalitat Valenciana [PROMETEO/2014/011, ISIC/2012/009]

向作者/读者索取更多资源

Transient receptor potential (TRP) proteins are a family of ion channels central for sensory signaling. These receptors and, in particular, those involved in thermal sensing are also involved in pain signaling. Noteworthy, thermosensory receptors are polymodal ion channels that respond to both physical and chemical stimuli, thus integrating different environmental clues. In addition, their activity is modulated by algesic agents and lipidergic substances that are primarily released in pathological states. Lipids and lipid-like molecules have been found that can directly activate some thermosensory channels or modulate their activity by either potentiating or inhibiting it. To date, more than 50 endogenous lipids that can regulate TRP channel activity in sensory neurons have been described, thus representing the majority of known endogenous TRP channel modulators. Lipid modulators of TRP channels comprise lipids from a variety of metabolic pathways, including metabolites of the cyclooxygenase, lipoxygenase and cytochrome-P450 pathways, phospholipids and lysophospholipids. Therefore, TRP-channels are able to integrate and interpret incoming signals from the different metabolic lipid pathways. Taken together, the large number of lipids that can activate, sensitize or inhibit neuronal TRP-channels highlights the pivotal role of these molecules in sensory biology as well as in pain transduction and perception. This article is part of a Special Issue entitled: Lipid-protein interactions. Guest Editors: Amitabha Chattopadhyay and Jean-Marie Ruysschaert. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据