4.7 Article

Arabidopsis ABF3 and ABF4 Transcription Factors Act with the NF-YC Complex to Regulate SOC1 Expression and Mediate Drought-Accelerated Flowering

期刊

MOLECULAR PLANT
卷 12, 期 4, 页码 489-505

出版社

CELL PRESS
DOI: 10.1016/j.molp.2019.01.002

关键词

drought escape; abscisic acid; ABF3; ABF4; NF-YC; SOC1

资金

  1. National Research Foundation of Korea - Korean Government [NRF-2017R1A2B3009624]
  2. Samsung Science and Technology Foundation [SSTF-BA1602-12]

向作者/读者索取更多资源

The drought-escape response accelerates flowering in response to drought stress, allowing plants to adaptively shorten their life cycles. Abscisic acid (ABA) mediates plant responses to drought, but the role of ABA-responsive element (ABRE)-binding factors (ABFs) in the drought-escape response is poorly understood. Here, we show that Arabidopsis thaliana ABF3 and ABF4 regulate flowering in response to drought through transcriptional regulation of the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). The abf3 abf4 mutant displayed ABA-insensitive late flowering under long-day conditions. Ectopic expression of ABF3 or ABF4 in the vasculature, but not in the shoot apex, induced early flowering, whereas expression of ABF3 fused with the SRDX transcriptional repressor domain delayed flowering. We identified SOC1 as a direct downstream target of ABF3/4, and found that SOC1 mRNA levels were lower in abf3 abf4 than in wild-type plants. Moreover, induction of SOC1 by ABA was hampered in abf3 abf4 mutants. ABF3 and ABF4 were enriched at the -1028- to -657-bp region of the SOC1 promoter, which does not contain canonical ABF-ABRE-binding motifs but has the NF-Y binding element. We found that ABF3 and ABF4 interact with nuclear factor Y subunit C (NF-YC) 3/4/9 in vitro and in planta, and induction of SOC1 by ABA was hampered in nf-yc3 yc4 yc9 mutants. Interestingly, the abf3 abf4, nf-yc3 yc4 yc9, and soc/ mutants displayed a reduced drought-escape response. Taken together, these results suggest that ABF3 and ABF4 act with NF-YCs to promote flowering by inducing SOC1 transcription under drought conditions. This mechanism might contribute to adaptation by enabling plants to complete their life cycles under drought stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据