4.6 Article

Stable Colloidal Drug Aggregates Catch and Release Active Enzymes

期刊

ACS CHEMICAL BIOLOGY
卷 11, 期 4, 页码 992-1000

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acschembio.5b00806

关键词

-

资金

  1. National Institutes of Health [GM71630]
  2. Canadian Cancer Society Research Institute
  3. Natural Sciences and Engineering Research Council (NSERC) postdoctoral fellowship
  4. NSERC graduate scholarship

向作者/读者索取更多资源

Small molecule aggregates are considered nuisance compounds in drug discovery, but their unusual properties as colloids could be exploited to form stable vehicles to preserve protein activity. We investigated the coaggregation of seven molecules chosen because they had been previously intensely studied as colloidal aggregators, coformulating them with bis-azo dyes. The coformulation reduced colloid sizes to <100 nm and improved uniformity of the particle size distribution. The new colloid formulations are more stable than previous aggregator particles. Specifically, coaggregation of Congo Red with sorafenib, tetraiodophenolphthalein (TIPT), or vemurafenib produced particles that are stable in solutions of high ionic strength and high protein concentrations. Like traditional, single compound colloidal aggregates, the stabilized colloids adsorbed and inhibited enzymes like beta-lactamase, malate dehydrogenase, and trypsin. Unlike traditional aggregates, the coformulated colloid-protein particles could be centrifuged and resuspended multiple times, and from resuspended particles, active trypsin could be released up to 72 h after adsorption. Unexpectedly, the stable colloidal formulations can sequester, stabilize, and isolate enzymes by spin down, resuspension, and release.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据