4.4 Article

Fabrication of three-dimensional mPEG-PCL-mPEG scaffolds combined with cell-laden gelatin methacrylate (GelMA) hydrogels using thermal extrusion coupled with photo curable technique

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00542-018-4190-x

关键词

-

资金

  1. MOST of Taiwan [106-2221-E-150-001]
  2. NSFC (Natural Science Foundation of China) [81671928]
  3. National Health and Medical Research Council (NHMRC) Fellowship [APP1158402]
  4. Channel 7 Children's Research Foundation [181662]
  5. NSFC [81671928]

向作者/读者索取更多资源

It has remained a great challenge to design a tissue engineering scaffold for tissue regeneration, which should be suitable for cell adhesion, proliferation and differentiation. One possible solution may be to fabricate the scaffolds with the stable mechanical property, controllable pore size and good interconnectivity, and allowing homogenous cell distribution. This study described the key technology of fabricating three-dimensional (3D) mPEG-PCL-mPEG scaffolds combined with cell-laden gelatin methacrylate (GelMA) hydrogels. Firstly, a dual-nozzle 3D printing system was successfully developed using thermal extrusion coupled with a photo curable technique. Then, the triblock material mPEG-PCL-mPEG was synthesized and evaluated. Subsequently, the fabricated 3D mPEG-PCL-mPEG scaffolds were injected with cell-laden GelMA hydrogels. Finally, the mPEG-PCL-mPEG scaffolds were evaluated. The evaluation results showed that this 3D mPEG-PCL-mPEG scaffolds technology is a potentially powerful approach, which may be used in a variety of tissue engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据