4.8 Article

Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 3, 页码 2232-2237

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b10987

关键词

antisolvent-solvent extraction; nucleation; grain growth; solar cells; wide-bandgap perovskite

资金

  1. National Science Foundation [DMR-1305913, OIA-1538893]
  2. U.S. Department of Energy [DE-AC36-08-GO28308]
  3. U.S. Department of Energy (DOE) SunShot Initiative [DE-FOA-0000990]
  4. Office of Integrative Activities
  5. Office Of The Director [1538893] Funding Source: National Science Foundation

向作者/读者索取更多资源

Wide..bandgap perovskite solar cells (PSCs) based on organolead (I, Br) mixed halide perovskites (e.g., MAPbI(2)Br and MAPbIBr(2) perovskite with bandgaps of 1.77 and 2.05 eV, respectively) are considered as promising low-cost alternatives for application in tandem or multijunction. photovoltaics (PVs). Here, we demonstrate that manipulating the crystallization behavior of (I, Br)-mixed halide perovskites in antisolvent bath is critical for the formation of smooth, dense thin films of these perovskites. Since the growth of perovskite grains from a precursor solution tends to be more rapid with increasing Br content, further enhancement in the nucleation rate becomes necessary for the effective decoupling of the nucleation and the crystal-growth stages in Br-rich perovskites. This is enabled by introducing simple stirring during antisolvent-bathing, which induces enhanced advection transport of the extracted precursor-solvent into the bath environment. Consequently, wide-bandgap planar PSCs fabricated using these high quality mixed-halide perovskite thin films, Br-rich MAPbIBr(2), in particular, show enhanced PV performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据