4.8 Article

A Polysulfide-Trapping Interface for Electrochemically Stable Sulfur Cathode Development

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 7, 页码 4709-4717

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b12012

关键词

lithium-sulfur batteries; electrochemistry; separator; cell configuration; coating

资金

  1. National Science Foundation Nanosystems Engineering Research Center (NERC) for Nanomanufacturing Systems for Mobile Computing and Mobile Energy Technologies (NASCENT) [EEC-1160494]

向作者/读者索取更多资源

Lithium-sulfur (Li-S) cells have a strong edge to become an inexpensive, high-capacity rechargeable battery system. However, currently, several prohibitive challenges occur within the sulfur core, especially the polysulfide-diffusion problem. To address these scientific issues, we present here a boron-doped multiwalled carbon nanotube coated separator (B-CNT-coated separator). The B-CNT-coated separator creates a polysulfide trap between the pure sulfur cathode and the polymeric separator as a polysulfide-trapping interface, stabilizing the active material and allowing the dissolved polysulfides to activate the bulk sulfur cores. Therefore, the dissolved polysulfides change from causing fast capacity fade to assisting with the activation of bulk sulfur clusters in pure sulfur cathodes. Moreover, the heteroatom-doped polysulfide-trapping interface is currently one of the missing pieces of carbon-coated separators, which might inspire further studies in its effect and battery chemistry. Li-S cells employing B-CNT-coated separators (i) exhibit improved cyclability at various cycling rates from 0.2C to 1.0C rate and (ii) attain a high capacity retention rate of 60% with a low capacity fade rate of 0.04% cycle(-1) after 500 cycles. We believe that our B-CNT-coated separator could light up a new research area for integrating heteroatom-doped carbon into the flexible, lightweight, carbon-coated separator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据