4.6 Article

Damage diagnosis in intelligent tires using time-domain and frequency-domain analysis

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15397734.2018.1496842

关键词

Finite element method; damage detection; intelligent tire; crack; acceleration signal

向作者/读者索取更多资源

Tire durability plays an important role in road transportation safety and is taken very seriously by all tire manufacturers. Defects in tires can cause vehicle instability and create catastrophic accidents. In this article, a finite element model of the intelligent tire is developed using implicit dynamic analysis and is used for defect detection. Processing and analyzing the acceleration signals, measured at the center of the tire inner-liner, for the undamaged and damaged tires, can result in detecting the crack locations around the tire circumference. Additionally, prediction models used for damage diagnosis based on optimized number and location of sensors, was developed. Several sensors located at different locations around the circumference of the damaged tire and away from the crack surface, are used in order to assess sensor location sensitivity from the crack surface. It is observed that the radial component of the acceleration signal has the highest potential to be used as the signal of choice in defect detection as compared to circumferential acceleration signals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据