4.8 Article

Behavior of Photocarriers in the Light-Induced Metastable State in the p-n Heterojunction of a Cu(In,Ga)Se2 Solar Cell with CBD-ZnS Buffer Layer

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 34, 页码 22151-22158

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b05005

关键词

Cu(In,Ga)Se-2; chemical bath deposition; light/UV soaking effect; p-n heterojunction; photocarriers; defect layer

资金

  1. New & Renewable Energy project of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Korean government Ministry Of Trade, Industry, Energy [20153010011990, 20153000000030]
  2. R&D Convergence Program of MSIP (Ministry of Science, ICT and Future Planning)
  3. ISTK (Korea Research Council for Industrial Science and Technology) of the Republic of Korea [B551179-12-01-00]
  4. Korea Evaluation Institute of Industrial Technology (KEIT) [20153000000030] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  5. National Research Council of Science & Technology (NST), Republic of Korea [B551179-12-01-00] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

We fabricated Cu(In,Ga)Se-2 (GIGS) solar cells with a chemical bath deposition (CBD)-ZnS buffer layer grown with varying ammonia concentrations in aqueous solution. The solar cell performance was degraded with increasing ammonia concentration, due to actively dissolved Zn atoms during CBD-ZnS precipitation. These formed interfacial defect states, such as hydroxide species in the CBD-ZnS film, and interstitial and antisite Zn defects at the p-n heterojunction. After light/UV soaking, the CIGS solar cell performance drastically improved, with a rise in fill factor. With the Zn-based buffer layer, the light soaking treatment containing blue photons induced a metastable state and enhanced the CIGS solar cell performance. To interpret this effect, we suggest a band structure model of the p-n heterojunction to explain the flow of photocarriers under white light at the initial state, and then after light/UV soaking. The determining factor is a p+ defect layer, containing an amount of deep acceptor traps, located near the GIGS surface. The p+ defect layer easily captures photoexcited electrons, and then when it becomes quasi-neutral, attracts photoexcited holes. This alters the barrier height and controls the photocurrent at the p-n junction, and fill factor values, determining the solar cell performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据