4.7 Article

A novel nonlinear modeling for the prediction of blast-induced airblast using a modified conjugate FR method

期刊

MEASUREMENT
卷 131, 期 -, 页码 35-41

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.measurement.2018.08.052

关键词

Blasting operation; Airblast; Modified conjugate FR method; Nonlinear modeling; USBM

向作者/读者索取更多资源

Prediction of the blast-induced is an important issue in Shur river dam, Iran. The nonlinear mathematical models can provide an appropriate flexibility to achieve the accurate predictions of the blast-induced airblast. In this paper, a set of nonlinear mathematical models with eight empirical relations, which are added based on the logarithmic and power basic functions, are selected to calibrate of the mine blasting airblast using two input variables, i.e. maximum charge per delay (MC) and distance from the blast-point (DI). A general regression analysis is proposed to calibrate the nonlinear models using a modified conjugate Fletcher and Reeves (FR) method using a limited scalar factor and dynamic step size to achieve the stabilization in nonlinear modeling. Finally, three simple empirical models are chosen to implement the prediction of the blast-induced airblast. The proposed empirical models were compared with the United States Bureau of Mines (USBM) model using several error statistics. The results indicate that the proposed modified FR model provides an appropriate calibration for the nonlinear regression analysis. Also, it was found that the empirical model proposed in this study, with the root mean square error (RMSE) of 3.79, is more accurate than USBM, with the RMSE of 4.22, and can be applied to other sites for predicting the airblast. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据