4.8 Article

Excellent Electromagnetic Absorption Capability of Ni/Carbon Based Conductive and Magnetic Foams Synthesized via a Green One Pot Route

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 2, 页码 1468-1477

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b10805

关键词

foam; conductivity; magnetism; green fabrication; electromagnetic absorption

资金

  1. National Natural Science Foundation of China [51403192, 51503191]

向作者/读者索取更多资源

Electromagnetic microwave absorption materials have attracted a great deal of attention. Foams for the low density and tunable porosity are considered as ideal microwave absorbents, while with the requirement of improving their inherent electromagnetic properties. In this manuscript, an innovative, easy, and green method was presented to synthesize an electromagnetic functionalized Ni/carbon foam, in which the formation of Ni nanoparticles and carbon occurred simultaneously from an affordable alginate/Ni2+ foam precursor. The resultant Ni/carbon foam had a low density (0.1 g/cm(-3)) and high Ni nanoparticles loading (42 wt %). These Ni nanoparticles with a diameter of about 50-100 nm were highly crystallized and evenly embedded in porous graphite carbon without aggregation. Also, the resultant foam had a high surface area (451 m(2) g(-1)) and porosity and showed a moderate conductivity (6 S/m) and significant magnetism. Due to these special characteristics, the Ni/carbon foam exhibited greatly enhanced microwave absorption ability. Only with 10 wt % of functional fillers being used in the test template, the Ni/carbon foam based composite could reach an effective absorption bandwidth (below -10 dB) of 4.5 GHz and the minimum reflection value of -45 dB at 13.3 GHz with a thickness of 2 mm, while the traditional carbon foam and nano-Ni powder both showed very weak microwave absorption (the minimum reflection value <-10 dB). This foam was demonstrated to be a lightweight, high performance, and low filler loading microwave absorbing material. Furthermore, the detailed absorption mechanism of the foam was investigated. The result showed that the derived strong dielectric loss, including conductivity loss, interface polarization loss, weak magnetic loss, and naoporosity, contributes a great electromagnetic absorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据