4.3 Article

Encapsulation of bovine serum albumin within novel xanthan gum based hydrogel for protein delivery

出版社

ELSEVIER
DOI: 10.1016/j.msec.2018.10.040

关键词

Bovine serum albumin (BSA); Hydrogel; Xanthan gum (XG); Poly (N-vinyl imidazole) (PVI); Protein delivery; Cytotoxicity

向作者/读者索取更多资源

Aim of the present study is to investigate synthesis of novel hydrogel as a potential protein carrier, intended for controlled release formulation. The hydrophilic bovine serum albumin (BSA) was chosen as a model protein to be encapsulated within xanthan gum (XG)/poly (N-vinyl imidazole (PVI) hydrogel. Both XG/PVI hydrogel and XG/PVI/BSA matrix structures were elucidated via different analysis tools such as FTIR, XRD, FE-SEM and EDX. Both BSA loading and release profiles were determined. Cytotoxicity of XG/PVI hydrogel was investigated against normal cell line (VERO cells). The obtained results revealed that % Drug (BSA) loading (% DL) and Encapsulation Efficiency (% EE) increased with increasing both gelation time and loaded BSA concentration, while %DL and %EE decreased with increasing the polymer concentration. The maximum value of %DL and %EE was 59.50% and 99.17%, respectively. Results of in-vitro BSA release in PBS showed that increase in the polymer (XG and PVI) concentrations led to increase in BSA release. Kinetic studies of the in-vitro release of BSA from XG/PVI/BSA matrix followed non-Fickian and case II transport mechanism. Moreover, Cytotoxicity results showed good biocompatibility of this novel hydrogel. SDS-PAGE analysis confirmed that the structural integrity of BSA was not affected by the encapsulation or release conditions. Consequently, this novel hydrogel can be used as an efficient BSA carrier for protein delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据