4.3 Article

Melanin incorporated electroactive and antioxidant silk fibroin nanofibrous scaffolds for nerve tissue engineering

出版社

ELSEVIER
DOI: 10.1016/j.msec.2018.09.014

关键词

Nerve injury; Electrospun nanofibers; Silk fibroin; Melanin; Neuroblastoma cells

资金

  1. Department of Science & Technology, India
  2. Council of Scientific & Industrial Research (CSIR), India
  3. DBT-Innovative Young Biotechnologist Award (IYBA) [BT/03/IYBA/2010]

向作者/读者索取更多资源

Nerve restoration and repair in the central nervous system is complicated and requires several factors to be considered while designing the scaffolds like being bioactive as well as having neuroinductive, neuroconductive and antioxidant properties. Aligned electrospun nanofibers provide necessary guidance and topographical cues required for directing the axonal and neurite outgrowth during regeneration. Conduction of nerve impulses is a mandatory feature of a typical nerve. The neuro-conductive property can be imparted by blending the biodegradable, bioactive polymers with conductive polymers. This will provide additional features, i.e., electrical cues to the already existing topographical and bioactive cues in order to make it a more multifaceted neuro-conductive approach. Hence in the present study, we used a combination of silk fibroin and melanin for the fabrication of random and aligned electrospun nanofibrous composite scaffolds. We performed the physico-chemical characterization and also assessed their antioxidant properties. We also evaluated their neurogenic potential using human neuroblastoma cells (SH-SY5Y) for their cellular viability, proliferation, adhesion and differentiation levels. Designed nanofibrous scaffolds had adequate physical properties suitable as neural substrates to promote neuronal growth and regeneration. They stimulated the neuroblastoma cell attachment and viability indicating their biocompatible nature. Silk/melanin composite scaffolds have specifically exhibited high antioxidant nature proven by the radical scavenging activity. Additionally, the melanin incorporated aligned silk fibroin scaffolds promoted the cell differentiation into neurons and orientation along their axis. Our results confirmed the potential of melanin incorporated aligned silk fibroin scaffolds as the promising candidates for effective nerve regeneration and recovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据