4.8 Article

Photodetection in Hybrid Single-Layer Graphene/Fully Coherent Germanium Island Nanostructures Selectively Grown on Silicon Nanotip Patterns

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 3, 页码 2017-2026

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b10336

关键词

germanium; selective epitaxy; elastic relaxation; graphene; photodetection

资金

  1. Deutsche Forschungsgemeinschaft DACH project [SCHR 1123/10-1]

向作者/读者索取更多资源

Dislocation networks are one of the most principle sources deteriorating the performances of devices based on lattice-mismatched heteroepitaxial systems. We demonstrate here a technique enabling fully coherent germanium (Ge) islands selectively grown on nanotippatterned Si(001) substrates. The silicon (Si)-tip-patterned substrate, fabricated by complementary metal oxide semiconductor compatible nanotechnology, features similar to 50-nm-wide Si areas emerging from a SiO2 matrix and arranged in an ordered lattice. Molecular beam epitaxy growths result in Ge nanoislands with high selectivity and having homogeneous shape and size. The similar to 850 degrees C growth temperature required for ensuring selective growth has been shown to lead to the formation of Ge islands of high crystalline quality without extensive Si intermixing (with 91 atom % Ge). Nanotip-patterned wafers result in geometric, kinetic-diffusion-barrier intermixing hindrance, confining the major intermixing to the pedestal region of Ge islands, where kinetic diffusion barriers are, however, high. Theoretical calculations suggest that the thin Si/Ge layer at the interface plays, nevertheless, a significant role in realizing our fully coherent Ge nanoislands free from extended defects especially dislocations. Single-layer graphene/Ge/Si-tip Schottky junctions were fabricated, and thanks to the absence of extended defects in Ge islands, they demonstrate high-performance photodetection characteristics with responsivity of similar to 45 mA W-1 and an I-on/I-off ratio of similar to 10(3).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据