4.5 Article

Multicenter reproducibility of quantitative susceptibility mapping in a gadolinium phantom using MEDI+0 automatic zero referencing

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 81, 期 2, 页码 1229-1236

出版社

WILEY
DOI: 10.1002/mrm.27410

关键词

multicenter reproducibility; quantitative susceptibility mapping

资金

  1. National Institute of Biomedical Imaging and Bioengineering [5F31EB019883-02]

向作者/读者索取更多资源

Purpose: To determine the reproducibility of quantitative susceptibility mapping at multiple sites on clinical and preclinical scanners (1.5 T, 3 T, 7 T, and 9.4 T) from different vendors (Siemens, GE, Philips, and Bruker) for standardization of multicenter studies. Methods: Seven phantoms distributed from the core site, each containing 5 compartments with gadolinium solutions with fixed concentrations between 0.625 mM and 10 mM. Multi-echo gradient echo scans were performed at 1.5 T, 3 T, 7 T, and 9.4 T on 12 clinical and 3 preclinical scanners. DICOM images from the scans were processed into quantitative susceptibility maps using the Laplacian boundary value (LBV) and MEDI+ 0 automatic uniform reference algorithm. Region of interest (ROI) analyses were performed by a physicist to determine agreement between results from all sites. Measurement reproducibility was assessed using regression, Bland-Altman plots, and the intra-class correlation coefficient (ICC). Results: Quantitative susceptibility mapping (QSM) from all scanners had similar, artifact-free visual appearance. Regression analysis showed a linear relationship between gadolinium concentrations and average QSM measurements for all phantoms (y = 350x - 0.0346, r(2)> 0.99). The SD of measurements increased almost linearly from 32 ppb to 230 ppb as the measured susceptibility increased from 0.26 ppm to 3.56 ppm. A Bland-Altman plot showed the bias, upper, and lower limits of agreement for all comparisons were -10, -210, and 200 ppb, respectively. The ICC was 0.991 with a 95% CI (0.973, 0.99). Conclusions: QSM shows excellent multicenter reproducibility for a large range of susceptibility values encountered in cranial and extra-cranial applications on a diverse set of scanner platforms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据