4.8 Article

Facet-Dependent Photocatalytic N2 Fixation of Bismuth-Rich Bi5O7I Nanosheets

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 8, 期 41, 页码 27661-27668

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b08129

关键词

Bi5O7I; bismuth-rich; facet; N-2 fixation; photocatalysis

资金

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University) [PLN201615]
  2. National Natural Science Foundation of China [51502146, U1404506]
  3. Natural Science Foundation of Henan Department of Science Technology [142102210477]
  4. Natural Science Foundation of Henan Department of Education [14A150021]
  5. Natural Science Foundation of Nanyang Normal University [ZX2014039]
  6. Scientific Research Starting Project of SWPU [2015QHZ001]
  7. Young Scholars Development Fund of SWPU [201499010100]

向作者/读者索取更多资源

Bismuth-rich bismuth oxyhalides (Bi-O-X; X = Cl, Br, I) display high photocatalytic reduction activity due to the promoting conduction band potential. In this work, two Bi5O7I nanosheets with different dominant facets were synthesized using either molecular precursor hydrolysis or calcination. Crystal structure characterizations, included X-ray diffraction patterns (XRD), field emission electron microscopy and fast Fourier transformation (FFT) images, showed that hydrolysis and calcination resulted in the dominant exposure of {100} and {001} facets, respectively. Photocatalytic data revealed that Bi5O7I-001 had a higher activity than Bi5O7I-100 for N2 fixation and dye degradation. Photoelectrochemical data revealed that Bi5O7I-001 had higher photoinduced carrier separation efficiency than Bi5O7I-100. The band structure analysis also used to explain the underlying photocatalytic mechanism based on the different conduction band position. This work presents the first report about the facet-dependent photocatalytic performance of bismuth-rich Bi-O-X photocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据